Q. Let $S$ be the set of all solutions of the equation $\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^2}\right)=\pi$, $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$. Then $\displaystyle\sum_{x \in S} 2 \sin ^{-1}\left(x^2-1\right)$ is equal to
Solution: