Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S be the area of the region enclosed by y=e-x2, y=0, x=0 and x=1. Then
Q. Let
S
be the area of the region enclosed by
y
=
e
−
x
2
,
y
=
0
,
x
=
0
and
x
=
1
. Then
2454
162
AIEEE
AIEEE 2012
Report Error
A
S
≥
e
1
B
S
≥
1
−
e
1
C
S
≤
4
1
(
1
+
e
1
)
D
S
≤
2
1
+
e
1
(
1
−
2
1
)
Solution:
S
>
e
1
(As area of rectangle
OC
D
S
=
1/
e
)
Since
e
−
x
2
≥
e
−
x
∀
x
∈
[
0
,
1
]
⇒
S
>
0
∫
1
e
−
x
d
x
=
(
1
−
e
1
)
Area of rectangle OAPQ
+
Area of rectangle
QBRS
>
S
S
<
2
1
(
1
)
+
(
1
−
2
1
)
(
e
1
)
Since
4
1
(
1
+
e
1
)
<
1
−
e
1
Hence,
(
C
)
is incorrect.