Thank you for reporting, we will resolve it shortly
Q.
Let $S$ be the area of the region enclosed by $y=e^{-x^{2}}, y=0, x=0$ and $x=1$. Then
AIEEEAIEEE 2012
Solution:
$S >\frac{1}{e} $ (As area of rectangle $\left. OCDS =1 / e \right)$
Since $e ^{- x ^{2}} \geq e ^{- x } \forall x \in[0,1]$
$\Rightarrow S>\int\limits_{0}^{1} e^{-x} d x=\left(1-\frac{1}{e}\right)$
Area of rectangle OAPQ $+$ Area of rectangle $QBRS > S$ $S<\frac{1}{\sqrt{2}}(1)+\left(1-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{e}}\right)$
Since $\frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)<1-\frac{1}{e}$
Hence, $( C )$ is incorrect.