Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S= α: log 2(92 α-4+13)- log 2((5/2) ⋅ 32 α-4+1)=2 . Then the maximum value of β for which the equation x2-2( displaystyle∑α ∈ s α)2 x+ displaystyle∑α ∈ s(α+1)2 β=0 has real roots, is
Q. Let
S
=
{
α
:
lo
g
2
​
(
9
2
α
−
4
+
13
)
−
lo
g
2
​
(
2
5
​
â‹…
3
2
α
−
4
+
1
)
=
2
}
. Then the maximum value of
β
for which the equation
x
2
−
2
(
α
∈
s
∑
​
α
)
2
x
+
α
∈
s
∑
​
(
α
+
1
)
2
β
=
0
has real roots, is _____
2521
141
JEE Main
JEE Main 2023
Complex Numbers and Quadratic Equations
Report Error
Answer:
25
Solution:
lo
g
2
​
(
9
2
α
−
4
+
13
)
−
lo
g
2
​
(
2
5
​
â‹…
3
2
α
−
4
+
1
)
=
2
⇒
2
5
​
3
2
α
−
4
+
1
9
2
α
−
4
+
13
​
=
4
⇒
α
=
2
 orÂ
3
α
∈
S
∑
​
α
=
5
 andÂ
α
∈
S
∑
​
(
α
+
1
)
2
=
25
⇒
x
2
−
50
x
+
25
β
=
0
 has real rootsÂ
⇒
β
≤
25
⇒
β
m
a
x
​
=
25