Q. Let $S=\left\{\alpha: \log _2\left(9^{2 \alpha-4}+13\right)-\log _2\left(\frac{5}{2} \cdot 3^{2 \alpha-4}+1\right)=2\right\}$. Then the maximum value of $\beta$ for which the equation $x^2-2\left(\displaystyle\sum_{\alpha \in s} \alpha\right)^2 x+\displaystyle\sum_{\alpha \in s}(\alpha+1)^2 \beta=0$ has real roots, is _____
Solution: