∣z2+∣z2−1∣2=∣z2−∣z2+1∣2 ⇒∣z2+∣z2−1∣∣(z2+∣z2−1∣)=(z2−∣z2+1∣)(z2−(z2+1)) ⇒z2∣z2+122−1∣−(z2−∣z2+1∣)+z2(∣z2−1∣+∣z2+1∣) =∣z2+1∣2=∣z2−1∣2 ⇒[z2+z2)(∣z2−1∣)+(z2+1∣)=2(z2+z2) ⇒(z2+z2)(∣z2−1∣+∣z2+1∣−2)=0 ∴z2+z2=0 or ∣z2−1∣+∣z2+1∣−2=0 ∴z2 lie on imaginary axis. Or on real axis with in [−1,1]
Also ∣z1−3∣=21 lie on circle having centre 3 and radius 21.