Q. Let $S_1=\left\{z_1 \in C:\left|z_1-3\right|=\frac{1}{2}\right\}$ and $S _2=\left\{ z _2 \in C :\left| z _2-\right| z _2+1||=\left| z _2+\right| z _2-1||\right\}$. Then, for $z_1 \in S_1$ and $z_2 \in S_2$, the least value of $\left|z_2-z_1\right|$ is :
Solution: