Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let r be the positive and zero of P(x)=9 x5+ 7 x 2-9. If the sum S = r 4+2 r 9+3 r 14+4 r 19+ ldots ∞ can be expressed as the rational number ((a/b)) in the lowest term, then find the sum of digits in (a+b)
Q. Let
r
be the positive and zero of
P
(
x
)
=
9
x
5
+
7
x
2
−
9
. If the sum
S
=
r
4
+
2
r
9
+
3
r
14
+
4
r
19
+
…
∞
can be expressed as the rational number
(
b
a
)
in the lowest term, then find the sum of digits in
(
a
+
b
)
1078
186
Sequences and Series
Report Error
Answer:
0004
Solution:
P
(
r
)
=
9
r
5
+
7
r
2
−
9
=
0
∴
9
(
1
−
r
5
)
=
7
r
2
...
(
i
)
Also,
S
=
r
4
+
2
r
9
+
3
r
14
+
4
r
19
+
…
∞
S
(
1
−
r
5
)
=
r
4
+
r
9
+
r
14
+
…
∞
S
⋅
r
5
=
+
r
9
+
2
r
14
+
3
r
19
+
…
..∞
=
1
−
r
5
r
4
S
=
(
1
−
r
5
)
2
r
4
Using
1
−
r
5
=
9
7
r
2
S
=
49
81
=
b
a
⇒
(
a
+
b
)
=
130
∴
Sum of digits
=
4