Q. Let $r$ be the positive and zero of $P(x)=9 x^{5}+$ $7 x ^{2}-9$. If the sum $S = r ^{4}+2 r ^{9}+3 r ^{14}+4 r ^{19}+$ $\ldots \infty$ can be expressed as the rational number $\left(\frac{a}{b}\right)$ in the lowest term, then find the sum of digits in $(a+b)$
Sequences and Series
Solution: