Q.
Let P(x) be a polynomial of degree 4 having a relative maximum at x=2 and x→0Lim(3−xP(x))=27. Also P(1)=−9 and P′′(x) has a local minimum at x=2.
The value of definite integral ∫01(P(−x)−P(x))dx equals
We have x→0Lim(3−xP(x))=27⇒x→0LimxP(x)=−24 ∴ Let P(x)=ax4+bx3+cx2−24x....(1)
Now, P(1)=−9⇒a+b+c=15....(2)
Also, P′(2)=0⇒8a+3b+c=6....(3)
and P′′′(2)=0⇒b=−8a....(4) ∴ On solving (2), (3), (4), we get a=1,b=−8,c=22
Hence, P(x)=x4−8x3+22x2−24x....(5) ∴P′(x)=4x3−24x2+44x−24=4(x3−6x2+11x−6)=4(x−1)(x−2)(x−3) ⇒P′′(x)=4(3x2−12x+11)
Clearly, P′′(x)>0∀x∈[3,4] (As P′(x) is increasing function on [3,4] )
Consider, 0∫1(P(−x)−P(x))dx=0∫1((x4+8x3+22x2+24x)−(x4−8x3+22x2−24x))dx =0∫1(16x3+48x)dx=160∫1(x3+3x)dx=16(4x4+23x2)01=16(41+23)=4+24=28.