Q.
Let P is any arbitrary point on the circumcircle of a given equilateral triangle ABC of side length ℓ units, then ∣PA∣2+∣PB∣2+∣PC∣2 is always equal to
Let position vector of P,A,B,C are p,a,b and c&O(O) be the circumcentre of equilateral
triangle ABC⇒∣p∣=∣a∣=∣b∣=∣c∣=3ℓ ∣PA∣2=∣a−p∣2=∣a∣2+∣p∣2−2a⋅p
Now, ∑∣PA∣2=6⋅3ℓ2−2p(a+b+c) as 3a+b+c=0 hence ∑∣PA∣2=2ℓ2