Q. Let $P$ is any arbitrary point on the circumcircle of a given equilateral triangle $A B C$ of side length $\ell$ units, then $|\overrightarrow{P A}|^2+|\overrightarrow{P B}|^2+|\overrightarrow{P C}|^2$ is always equal to
NTA AbhyasNTA Abhyas 2022
Solution: