Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P(3 sec θ, 2 tan θ) and Q(3 sec φ, 2 tan φ) where θ+φ=(π/2), be two distinct points on the hyperbola (x2/9)-(y2/4)=1. Then the ordinate of point of intersection of the normals at P and Q is
Q. Let
P
(
3
sec
θ
,
2
tan
θ
)
and
Q
(
3
sec
ϕ
,
2
tan
ϕ
)
where
θ
+
ϕ
=
2
π
, be two distinct points on the hyperbola
9
x
2
−
4
y
2
=
1
. Then the ordinate of point of intersection of the normals at
P
and
Q
is
231
148
Conic Sections
Report Error
A
3
11
B
3
−
11
C
2
13
D
2
−
13
Solution:
We have,
3
x
cos
θ
+
2
y
cot
θ
=
13
.....(1)
3
x
sin
θ
+
2
y
tan
θ
=
13
....(2)
∴
On solving (1) and (2), we get
y
=
2
−
13