Q. Let $P(3 \sec \theta, 2 \tan \theta)$ and $Q(3 \sec \phi, 2 \tan \phi)$ where $\theta+\phi=\frac{\pi}{2}$, be two distinct points on the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$. Then the ordinate of point of intersection of the normals at $P$ and $Q$ is
Conic Sections
Solution: