Q.
Let O be any point inside a tetrahedron ABCD . The line joining O to the vertices meet the opposite faces in P,Q,R,S respectively. If APOP+BQOQ+CROR+DSOS=k , then the value of k
p→=(λ−1λ)a→…(i)
Now BC→,BD→,BP→ are coplanar ⇒(c→−b→)×(d→−b→)⋅(p→−b→)=0 λ−1λ=[c→d→a→]−[b→d→a→]−[c→b→a→][c→d→b→] λ=[b→c→d→]+[a→b→d→]+[a→d→c→]+[a→c→[b→c→d]…(2)
Similarly
If BQOQ=μ,CROR=α,DSOS=β ⇒μ=[a→d→c→]+[a→b→d→]+[b→c→d→]+[a→c→d→][a→d→c→]
and so an ⇒APOD+BQOQ+CROR+DSOS=1