Q. Let $O$ be any point inside a tetrahedron $A B C D$ . The line joining $O$ to the vertices meet the opposite faces in $P , \, Q , \, R , \, S$ respectively. If $\frac{O P}{A P} + \frac{O Q}{B Q} + \frac{O R}{C R} + \frac{O S}{D S} = k$ , then the value of $k$
NTA AbhyasNTA Abhyas 2022
Solution: