Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ∫ (x1 / 2/√1-x3/2) d x=(2/3) operatornamegof(x)+C, then
Q. Let
∫
1
−
x
3/2
x
1/2
d
x
=
3
2
gof
(
x
)
+
C
, then
1460
197
Integrals
Report Error
A
f
(
x
)
=
x
15%
B
f
(
x
)
=
x
3/2
and
g
(
x
)
=
sin
−
1
x
47%
C
f
(
x
)
=
x
2/3
23%
D
None of these
15%
Solution:
Put
x
3/2
=
t
⇒
2
3
x
1/2
d
x
=
d
t
∴
integral is
∫
1
−
t
2
3
2
d
t
=
3
2
sin
−
1
t
+
C
=
3
2
sin
−
1
(
x
3/2
)
+
C