Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\int \frac{x^{1 / 2}}{\sqrt{1-x^{3/2}}} d x=\frac{2}{3} \operatorname{gof}(x)+C$, then

Integrals

Solution:

Put $x ^{3 / 2}= t \Rightarrow \frac{3}{2} x ^{1 / 2} dx = dt$
$\therefore $ integral is
$\int \frac{\frac{2}{3} dt }{\sqrt{1- t ^{2}}}=\frac{2}{3} \sin ^{-1} t + C$
$=\frac{2}{3} \sin ^{-1}\left( x ^{3 / 2}\right)+ C$