Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let i2=-1, then (i10-(1/i11))+(i11-(1/i12)) +(i12-(1/i13))+(i13-(1/i14))+(i14+(1/i15)) is equal to
Q. Let
i
2
=
−
1
, then
(
i
10
−
i
11
1
)
+
(
i
11
−
i
12
1
)
+
(
i
12
−
i
13
1
)
+
(
i
13
−
i
14
1
)
+
(
i
14
+
i
15
1
)
is
equal to
2653
212
KEAM
KEAM 2015
Complex Numbers and Quadratic Equations
Report Error
A
−
1
+
i
B
−
1
−
i
C
1
+
i
D
−
i
E
i
Solution:
(
i
10
−
i
11
1
)
+
(
i
11
−
i
12
1
)
+
(
i
12
−
i
13
1
)
+
(
i
13
−
i
14
1
)
+
(
i
14
+
i
15
1
)
=
(
i
2
−
i
3
1
)
+
(
i
3
−
i
0
1
)
+
(
i
0
−
i
1
)
+
(
i
−
i
2
1
)
+
(
i
2
+
i
3
1
)
=
−
1
−
−
i
1
+
(
−
i
)
−
1
1
+
1
−
i
1
+
i
−
−
1
1
+
(
−
1
)
+
−
i
1
=
−
1
+
i
1
−
i
−
1
+
1
−
i
1
+
i
+
1
−
1
−
i
1
=
−
1
−
i
1
=
−
1
+
i
=
i
−
1