Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $i^{2}=-1$, then $\left(i^{10}-\frac{1}{i^{11}}\right)+\left(i^{11}-\frac{1}{i^{12}}\right)$
$+\left(i^{12}-\frac{1}{i^{13}}\right)+\left(i^{13}-\frac{1}{i^{14}}\right)+\left(i^{14}+\frac{1}{i^{15}}\right)$ is
equal to

KEAMKEAM 2015Complex Numbers and Quadratic Equations

Solution:

$\left(i^{10}-\frac{1}{i^{11}}\right)+\left(i^{11}-\frac{1}{i^{12}}\right)$
$+\left(i^{12}-\frac{1}{i^{13}}\right)+\left(i^{13}-\frac{1}{i^{14}}\right)+\left(i^{14}+\frac{1}{i^{15}}\right)$
$=\left(i^{2}-\frac{1}{i^{3}}\right)+\left(i^{3}-\frac{1}{i^{0}}\right)+\left(i^{0}-\frac{1}{i}\right)$
$+\left(i-\frac{1}{i^{2}}\right)+\left(i^{2}+\frac{1}{i^{3}}\right)$
$=-1-\frac{1}{-i}+(-i)-\frac{1}{1}+1-\frac{1}{i}$
$+i-\frac{1}{-1}+(-1)+\frac{1}{-i}$
$=-1+\frac{1}{i}-i-1+1-\frac{1}{i}+i+1-1-\frac{1}{i}$
$=-1-\frac{1}{i}=-1+i=i-1$