Q.
Let g(x)=x3ln(x2f(x)) where f(x) is a differentiable positive function on (0,∞) satisfying f(2)=41 and f′(2)=−3, then g′(2) equals
319
116
Continuity and Differentiability
Report Error
Solution:
imodsC We have g(x)=x3ln(x2f(x)) ∴ On differentiating b.t.s. w.r.t. x, we get g′(x)=x2f(x)x3(x2f′(x)+2xf(x))+3x2ln(x2f(x)) Hence g′(2)=f(2)2(4f′(2)+4f(2))+12ln(4f(2)) =8(4×−3+4×41)+12ln(4×41)=8(−12+1)=−88