Q. Let $g(x)=x^3 \ln \left(x^2 f(x)\right)$ where $f(x)$ is a differentiable positive function on $(0, \infty)$ satisfying $f(2)=\frac{1}{4}$ and $f^{\prime}(2)=-3$, then $g^{\prime}(2)$ equals
Continuity and Differentiability
Solution: