Let g(x)=⎩⎨⎧2π−2tan−1f(x)−2π−2tan−1f(x)23π−2tan−1f(x)f(x)∈(−1,1)f(x)∈(−∞,−1)f(x)∈(1,∞)
(A) df(x)dg(x)=−1+f2(x)2=−131⇒f(x)=±5⇒x=−6,10⇒P,S
(B) refer to graph of y=f(x)⇒Q,R
(C) −k∈(−3,1)⇒k∈(−1,3)⇒Q,R
(D) g′(x)=1+f2(x)−2f′(x)<0⇒f′(x)>0⇒x=−6,10⇒P,S