Q.
Let $g(x)=\begin{cases}\frac{\pi}{2}-2 \tan ^{-1} f(x) & f(x) \in(-1,1) \\ -\frac{\pi}{2}-2 \tan ^{-1} f(x) & f(x) \in(-\infty,-1) \text { where } f(x)=\begin{cases}x+1 & x \leq 0 \\ 1-x^2 & 0< x< 2 \\ x-5 & x \geq 2\end{cases} \\ \frac{3 \pi}{2}-2 \tan ^{-1} f(x) & f(x) \in(1, \infty)\end{cases}$
Column I
Column II
A
Values of $x$ for which derivative of $g ( x )$ w.r.t. $f ( x )$ is $-\frac{1}{13}$ is/are
P
-6
B
Values of $x$ for which $f(x)$ has local maximum or local minimum is/are
Q
0
C
Values of $k$ for which $f(x)+k=0$ has 2 positive and one
R
2 negative root is/are
D
Values of $x$ for which $g^{\prime}(x)<0$ is/are
S
10
Column I | Column II | ||
---|---|---|---|
A | Values of $x$ for which derivative of $g ( x )$ w.r.t. $f ( x )$ is $-\frac{1}{13}$ is/are | P | -6 |
B | Values of $x$ for which $f(x)$ has local maximum or local minimum is/are | Q | 0 |
C | Values of $k$ for which $f(x)+k=0$ has 2 positive and one | R | 2 negative root is/are |
D | Values of $x$ for which $g^{\prime}(x)<0$ is/are | S | 10 |
Application of Derivatives
Solution: