Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let g: R arrow R be a continuous function such that g(x+1)=(1/3) g(x) for all x ∈ R and let α mathrmn=∫ limits0 mathrmn mathrmg( mathrmx) mathrmdx for all integer mathrmn ≥slant 1. Then displaystyle lim n arrow ∞ αn
Q. Let
g
:
R
→
R
be a continuous function such that
g
(
x
+
1
)
=
3
1
g
(
x
)
for all
x
∈
R
and let
α
n
=
0
∫
n
g
(
x
)
dx
for all integer
n
⩾
1
. Then
n
→
∞
lim
α
n
97
141
JEE Advanced
JEE Advanced 2019
Report Error
A
Exist
33%
B
Does not exist
67%
C
is equal to
2
3
0
∫
1
g
(
x
)
dx
67%
D
not equal to
2
3
0
∫
1
g
(
x
)
dx
133%
Solution:
g
(
x
+
1
)
=
3
1
g
(
x
)
g
(
x
+
2
)
=
3
1
g
(
x
+
1
)
=
9
1
g
(
x
)
Now,
n
→
∞
lim
α
n
=
n
→
∞
lim
⎝
⎛
0
∫
1
g
(
x
)
dx
+
1
∫
2
g
(
x
)
dx
+
2
∫
3
g
(
x
)
dx
+
……
⎠
⎞
2
∫
3
g
(
x
)
dx
;
x
=
t
+
2
;
0
∫
1
g
(
t
+
2
)
dt
=
9
1
∫
0
1
g
(
x
)
dx
i.e.
n
→
∞
lim
α
n
=
0
∫
1
g
(
x
)
dx
(
1
+
3
1
+
9
1
+
…
∞
)
=
2
3
0
∫
1
g
(
x
)
dx