Q. Let $g: R \rightarrow R$ be a continuous function such that $g(x+1)=\frac{1}{3} g(x)$ for all $x \in R$ and let $\alpha_{\mathrm{n}}=\int\limits_0^{\mathrm{n}} \mathrm{g}(\mathrm{x}) \mathrm{dx}$ for all integer $\mathrm{n} \geqslant 1$. Then $\displaystyle\lim _{n \rightarrow \infty} \alpha_n$
JEE AdvancedJEE Advanced 2019
Solution: