Q.
Let f(x+y+z)=f(x)⋅f(y)⋅f(z) for all x,y,z where f is a non-zero function i.e. f(x)=0 for all x. If f(2)=4,f′(0)=3, then find ∣f′(2)∣.
484
150
Continuity and Differentiability
Report Error
Answer: 12
Solution:
f(x+y+z)=f(x)f(y)f(z),
for all x,y,z...(i)
Substituting x=y=z=0 in (i),
we get f(0)=(f(0))3 ⇔f(0)[(f(0))2−1]=0 ⇔f(0)=±1…[f(0)=0]
Substituting y=2,z=0 in (i),
we get f(x+2)=f(x)⋅f(2)⋅(±1) ⇔f(x+2)=±4f(x), for all x.
Differentiating with respect to x,
we get f′(x+2)=±4f′(x), for all x
Substituting x=0, we get f′(2)=±4f′(0)=±4 (3) ⇒∣f′(2)∣=12