Q. Let $f(x+y+z)=f(x) \cdot f(y) \cdot f(z)$ for all $x, y, z$ where $f$ is a non-zero function i.e. $f(x) \neq 0$ for all $x$. If $f(2)=4, f'(0)=3$, then find $\left|f'(2)\right|$.
Continuity and Differentiability
Solution: