Q.
Let f(x)=⎩⎨⎧∣x−4∣x−4+a,a+b,∣x−4∣x−4+b,x<4x=4x>4
Then f(x) is continuous at x=4 when
2213
183
Continuity and Differentiability
Report Error
Solution:
We have
L.H.L =x→4−limf(x) =h→0limf(4−h) =h→0lim∣4−h−4∣4−h−4+a =h→0lim(−hh+a)=a−1
R.H.L =x→4+limf(x) =h→0limf(4+h) =h→0lim∣4+h−4∣4+h−4+b=b+1 ∴f(4)=a+b
Since f(x) is continuous at x=4, x→4−limf(x)=f(4)=x→4+limf(x)
or a−1=a+b=b+1
or b=−1 and a=1