Q.
Let $ f(x)=
\begin{cases}
\frac{x-4}{\left|x-4\right|}+a, & \quad x <\,4 \\
a+b, & \quad x=4 \\
\frac{x-4}{\left|x-4\right|}+b, & \quad x >\,4
\end{cases} $
Then $f (x)$ is continuous at $x=4$ when
Continuity and Differentiability
Solution: