Q.
Let f(x)=x2+ax+b. If the maximum and the minimum values of f(x) are 3 and 2 respectively for 0≤x≤2, then the possible ordered pair(s) of (a, b) is/are
564
88
Complex Numbers and Quadratic Equations
Report Error
Solution:
f(x)=x2+ax+b
vertex of f(x) is at −2a
f 0≤−2a≤2
i.e. 0≤−a≤4;−4≤a≤0 f(x)]min=f(−2a)=4a2−2a2+b=b−4a2=2 ....(1)
and f(x)]max=f(0) or f(2)
but f(0)=b and f(2)=4+2a+b
let b=3;
from(1) 3−4a2=2;4a2=1⇒a=2 or -2
but a=2 is rejected hence a=−2 ∴(−2,3) Ans. ⇒ (A)
if f(2) is maximum 4+2x+b=3⇒2a+b=−1
(2) - (1) gives, 2a+4a2=−3⇒a2+8a+12=0p(a+6)(a+2)=0a=−2 or a=−6 (rejected)
for vertex <0 or vertex >2 their are no accepted ordered pairs. Hence only (A) is correct