Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = x2 + (1/x2) and g(x) = x - (1/x) , x ∈ R - - 1, 0, 1 . If h(x) = (f(x) /g(x)), then the local minimum value of h(x) is
Q. Let
f
(
x
)
=
x
2
+
x
2
1
and
g
(
x
)
=
x
−
x
1
,
x
∈
R
−
{
−
1
,
0
,
1
}
. If
h
(
x
)
=
g
(
x
)
f
(
x
)
, then the local minimum value of
h
(
x
)
is
3031
220
JEE Main
JEE Main 2018
Application of Derivatives
Report Error
A
3
14%
B
-3
16%
C
−
2
2
35%
D
2
2
35%
Solution:
h
(
x
)
=
x
−
1/
x
x
2
+
x
2
1
=
(
x
−
1/
x
)
+
(
x
−
1/
x
)
2
x
−
x
1
>
0
,
(
x
−
1/
x
)
+
(
x
−
1/
x
)
2
∈
(
2
2
,
∞
]
x
−
x
1
<
0
,
(
x
−
1/
x
)
+
(
x
−
1/
x
)
2
∈
(
−
∞
,
−
2
2
]
Local minimum is
2
2