Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x) = x^2 + \frac{1}{x^2} $ and $g(x) = x - \frac{1}{x} , x \in R - \{ - 1, 0, 1 \}$. If $h(x) = \frac{f(x) }{g(x)}$, then the local minimum value of $h(x)$ is

JEE MainJEE Main 2018Application of Derivatives

Solution:

$h(x)=\frac{x^{2}+\frac{1}{x^{2}}}{x-1 / x}$
$=(x-1 / x)+\frac{2}{(x-1 / x)}$
$x-\frac{1}{x}>0,(x-1 / x)+\frac{2}{(x-1 / x)} \in(2 \sqrt{2}, \infty]$
$x-\frac{1}{x}<0,(x-1 / x)+\frac{2}{(x-1 / x)} \in(-\infty,-2 \sqrt{2}]$
Local minimum is $2 \sqrt{2}$