Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = begincases x2-1, 0 < x < 2 [2ex] 2x+3, 2 le x < 3 endcases, the quadratic equation whose roots are displaystyle limx → 2-f(x) and displaystyle limx → 2+f(x) is
Q. Let
f
(
x
)
=
⎩
⎨
⎧
x
2
−
1
,
2
x
+
3
,
0
<
x
<
2
2
≤
x
<
3
, the quadratic equation whose roots are
x
→
2
−
lim
f
(
x
)
and
x
→
2
+
lim
f
(
x
)
is
2328
204
Limits and Derivatives
Report Error
A
x
2
−
6
x
+
9
=
0
13%
B
x
2
−
7
x
+
8
=
0
27%
C
x
2
−
14
x
+
49
=
0
23%
D
x
2
−
10
x
+
21
=
0
37%
Solution:
x
→
2
−
lim
f
(
x
)
=
h
→
0
lim
(
2
−
h
)
2
−
1
=
h
→
0
lim
4
+
h
2
−
4
h
−
1
=
3
x
→
2
+
lim
f
(
x
)
=
h
→
0
lim
2
(
2
+
h
)
+
3
=
h
→
0
lim
4
+
2
h
+
3
=
7
∴
Required quadratic equation is
x
2
−
(
3
+
7
)
x
+
(
3
×
7
)
=
0
⇒
x
2
−
10
x
+
21
=
0