Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x) = \begin{cases} x^2-1, & 0 < x < 2{} \\[2ex] 2x+3, & 2 \le x < 3{} \end{cases}$, the quadratic equation whose roots are $\displaystyle \lim_{x \to 2^-}f(x)$ and $\displaystyle \lim_{x \to 2^+}f(x)$ is

Limits and Derivatives

Solution:

$\displaystyle \lim_{x \to 2^-}f(x)$ $=\displaystyle \lim_{h \to 0}(2-h)^2-1$
$=\displaystyle \lim_{h \to 0}4+h^2-4h-1=3$
$\displaystyle \lim_{x \to 2^+}f(x)$$=\displaystyle \lim_{h \to 0}2(2+h)+3$
$=\displaystyle \lim_{h \to 0}4+2h+3=7$
$\therefore $ Required quadratic equation is
$x^2 - ( 3 + 7)x + ( 3 \times 7) = 0$
$\Rightarrow x^2 -10x+21=0$