(A) ln(f(x))=ln(x−1)+ln(x−2)+……+ln(x−n) f′(x)=f(x)[x−11+x−21+……+x−n1] f′(x)=(x−2)(x−3)….(x−n)+(x−1)(x−3)….(x−n)+…..+(x−1)(x−2)…..(x−(n−1)) f′(n)=(n−1)(n−2)(n−3)⋅3⋅2⋅1( all other factors except the last vanishes when x=n) 5040=(n−1)! 7!=(n−1)!⇒n=8
(B)g(x)=f(x)f′(x)=x−11+x−21+………x−n1+C; hence g′(x)<0 (think!) ⇒g(x) is discontinuous at n points n=9
(C) g(x)=5 has either n−1 or n roots g(x)=f(x)f′(x) or g(x)=f(x)f′(x)+C ∴n=8 or 9
(D) No. of roots f′(x)=0 is n−1 (use L.M.V.T.) ⇒(n−1)(n−5)2=n−1⇒(n−1)(n−6)(n−4)=0