Q.
Let $f( x )=( x -1)( x -2)( x -3)$ $( x - n ), n \in N$ and $\int \frac{f(x) f^{\prime \prime}(x)-\left(f^{\prime}(x)\right)^2}{f^2(x)} d x=g(x)+C$, where $C$ is arbitrary constant.
Column I
Column II
A
If $f^{\prime}( n )=5040$, then $n$ is divisible by
P
4
B
If $g(x)$ is discontinuous at 9 points, $\forall x \in R$ then $n$ is greater than
Q
6
C
If $g(x)=5$ has 8 solutions, then $n$ may be equal to
R
8
D
If the number of roots of equation $f ^{\prime}( x )=0$, be $( n -5)^2( n -1),( n >1)$
S
9 then possible values of $n$ is/are
Column I | Column II | ||
---|---|---|---|
A | If $f^{\prime}( n )=5040$, then $n$ is divisible by | P | 4 |
B | If $g(x)$ is discontinuous at 9 points, $\forall x \in R$ then $n$ is greater than | Q | 6 |
C | If $g(x)=5$ has 8 solutions, then $n$ may be equal to | R | 8 |
D | If the number of roots of equation $f ^{\prime}( x )=0$, be $( n -5)^2( n -1),( n >1)$ | S | 9 then possible values of $n$ is/are |
Application of Derivatives
Solution: