Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= sin x,g(x)=x2 and h(x)= log ex . If f(x)=(hogof)(x), then f(x) is equal to
Q. Let
f
(
x
)
=
sin
x
,
g
(
x
)
=
x
2
and
h
(
x
)
=
lo
g
e
x
. If
f
(
x
)
=
(
h
o
g
o
f
)
(
x
)
,
then
f
(
x
)
is equal to
1237
178
KEAM
KEAM 2008
Report Error
A
a
cos
e
c
3
x
B
a
cot
x
2
−
4
x
2
cos
e
c
2
x
2
C
2
x
cot
x
2
D
−
2
cos
e
c
2
x
E
4
cos
e
c
2
x
Solution:
Given,
f
(
x
)
=
sin
x
,
g
(
x
)
=
x
2
and
h
(
x
)
=
lo
g
e
x
Also,
f
(
x
)
=
(
h
o
g
o
f
)
(
x
)
Now,
[
h
o
g
]
(
x
)
=
2
lo
g
e
x
⇒
(
h
o
g
o
f
)
(
x
)
=
2
lo
g
e
x
⇒
f
(
x
)
=
2
lo
g
e
sin
x
On differentiating w.r.t.
x
,
we get
f
(
x
)
=
2
cot
x
Again differentiating,
we get
f
(
x
)
=
−
2
cos
e
c
2
x