Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ f(x)=\sin x,g(x)={{x}^{2}} $ and $ h(x)={{\log }_{e}}x $ . If $ f(x)=(hogof)(x), $ then $ f(x) $ is equal to

KEAMKEAM 2008

Solution:

Given, $ f(x)=\sin x,g(x)={{x}^{2}} $ and $ h(x)={{\log }_{e}}x $
Also, $ f(x)=(hogof)(x) $
Now, $ [hog](x)=2{{\log }_{e}}x $
$ \Rightarrow $ $ (hogof)(x)=2{{\log }_{e}}x $
$ \Rightarrow $ $ f(x)=2{{\log }_{e}}\sin x $
On differentiating w.r.t. $ x, $
we get $ f(x)=2\cot x $
Again differentiating,
we get $ f(x)=-2\cos e{{c}^{2}}x $