f(x)=px2+qx+r f(−4)=0 ⇒16p−4q+r=0 ...(i)
One root is x=−4
and f(5)=−3f(2) 25p+5q+r=−3(4p+2q+r) ⇒37p+11q+4r=0 ...(ii)
Eq. (ii) - Eq. (i), we get ⇒−27p+27q=0 ⇒p=0
Then, equation is px2+qx+r=0
Roots =−4,α
Sum of roots =−4x+α=−qp=−1
So, another root α=3.