$f(x)=p x^{2}+q x +r$
$f(-4)=0$
$\Rightarrow \, 16 p-4 q +r=0$ ...(i)
One root is $x=-4$
and $f(5)=-3 f(2)$
$25 p+5 q +r=-3(4 p+2 q +r)$
$\Rightarrow 37 p+11 q+4 r=0$ ...(ii)
Eq. (ii) - Eq. (i), we get
$\Rightarrow -27 p+27 q =0$
$\Rightarrow p =0$
Then, equation is $p x^{2}+q x +r=0$
Roots $=-4, \alpha$
Sum of roots $=-4 x+\alpha=-\frac{p}{q}=-1$
So, another root $\alpha=3$.