Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) is a differentiable function on x∈ R , such that f(x + y)=f(x)f(y) for all x,y∈ R where f(0)≠ 0. If f(5)=10,f'(0)=6 , then the value of f' (5) is equal to
Q. Let
f
(
x
)
is a differentiable function on
x
∈
R
, such that
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
for all
x
,
y
∈
R
where
f
(
0
)
=
0.
If
f
(
5
)
=
10
,
f
′
(
0
)
=
6
, then the value of
f
′
(
5
)
is equal to
2361
251
NTA Abhyas
NTA Abhyas 2020
Report Error
Answer:
60
Solution:
f
′
(
5
)
=
h
→
0
lim
h
f
(
5
+
h
)
−
f
(
5
)
=
h
→
0
l
im
h
f
(
5
+
h
)
−
f
(
5
+
0
)
=
h
→
0
l
im
h
f
(
5
)
.
f
(
h
)
−
f
(
5
)
.
f
(
0
)
[
∵
f
(
x
+
y
)
=
f
(
x
)
.
f
(
y
)
f
or
a
ll
x
,
y
]
=
(
h
→
0
l
im
h
f
(
h
)
−
f
(
0
)
)
.
f
(
5
)
=
f
′
(
0
)
.
f
(
5
)
=
6
×
10
=
60