Q. Let $f\left(x\right)$ is a differentiable function on $x\in R$ , such that $f\left(x + y\right)=f\left(x\right)f\left(y\right)$ for all $x,y\in R$ where $f\left(0\right)\neq 0.$ If $f\left(5\right)=10,f^{'}\left(0\right)=6$ , then the value of $f^{'} \left(5\right)$ is equal to
NTA AbhyasNTA Abhyas 2020
Solution: