Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=∫ (2 x/(x2+1)(x2+3)) d x. If f(3)=(1/2)( log e 5- log e 6), then f(4) is equal to
Q. Let
f
(
x
)
=
∫
(
x
2
+
1
)
(
x
2
+
3
)
2
x
d
x
. If
f
(
3
)
=
2
1
(
lo
g
e
5
−
lo
g
e
6
)
, then
f
(
4
)
is equal to
141
133
JEE Main
JEE Main 2023
Integrals
Report Error
A
lo
g
e
17
−
lo
g
e
18
B
lo
g
e
19
−
lo
g
e
20
C
2
1
(
lo
g
e
19
−
lo
g
e
17
)
D
2
1
(
lo
g
e
17
−
lo
g
e
19
)
Solution:
Put
x
2
=
t
∫
(
t
+
1
)
(
t
+
3
)
d
t
=
2
1
∫
(
t
+
1
1
−
t
+
3
1
)
d
t
f
(
x
)
=
2
1
ln
(
x
2
+
3
x
2
+
1
)
+
C
f
(
3
)
=
2
1
(
ln
10
−
ln
12
)
+
C
⇒
C
=
0
f
(
4
)
=
2
1
ln
(
19
17
)