Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)=\int \frac{2 x}{\left(x^2+1\right)\left(x^2+3\right)} d x$. If $f(3)=\frac{1}{2}\left(\log _e 5-\log _e 6\right)$, then $f(4)$ is equal to

JEE MainJEE Main 2023Integrals

Solution:

Put $x^2=t$
$\int \frac{ dt }{( t +1)( t +3)}=\frac{1}{2} \int\left(\frac{1}{t+1}-\frac{1}{t+3}\right) d t$
$ f(x)=\frac{1}{2} \ln \left(\frac{x^2+1}{x^2+3}\right)+C $
$ f(3)=\frac{1}{2}(\ln 10-\ln 12)+C$
$ \Rightarrow C=0 $
$ f(4)=\frac{1}{2} \ln \left(\frac{17}{19}\right)$