Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= displaystyle lim h arrow 0 (( sin (x+h)) ln (x+h)-( sin x) ln x/h), then f((π/2)) is
Q. Let
f
(
x
)
=
h
→
0
lim
h
(
sin
(
x
+
h
)
)
l
n
(
x
+
h
)
−
(
sin
x
)
l
n
x
, then
f
(
2
π
)
is
1686
176
Continuity and Differentiability
Report Error
A
equal to 0
B
equal to 1
C
ln
2
π
D
non-existent
Solution:
Let
g
(
x
)
=
(
sin
x
)
l
n
x
=
e
l
n
x
⋅
l
n
(
s
i
n
x
)
f
(
x
)
=
g
′
(
x
)
=
(
sin
x
)
l
n
x
[
cot
x
(
ln
x
)
+
x
l
n
(
s
i
n
x
)
]
Hence,
f
(
2
π
)
=
g
′
(
2
π
)
=
1
(
0
+
0
)
=
0