Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)=\displaystyle\lim _{h \rightarrow 0} \frac{(\sin (x+h))^{\ln (x+h)}-(\sin x)^{\ln x}}{h}$, then $f\left(\frac{\pi}{2}\right)$ is

Continuity and Differentiability

Solution:

Let $g(x)=(\sin x)^{\ln x}=e^{\ln x \cdot \ln (\sin x)}$
$f(x)=g^{\prime}(x)=(\sin x)^{\ln x}\left[\cot x(\ln x)+\frac{\ln (\sin x)}{x}\right]$
Hence, $f \left(\frac{\pi}{2}\right)= g ^{\prime}\left(\frac{\pi}{2}\right)=1(0+0)=0$