Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = cos ( (π/x) ) , x ≠ 0 then assuming k as an integer,
Q. Let
f
(
x
)
=
cos
(
x
π
)
,
x
=
0
then assuming
k
as an integer,
2100
202
WBJEE
WBJEE 2018
Report Error
A
f(x) increases in the interval
(
2
k
+
1
1
,
2
k
1
)
67%
B
f(x) decreases in the interval
(
2
k
+
1
1
,
2
k
1
)
33%
C
f(x) decreases in the interval
(
2
k
+
1
1
,
2
k
+
2
1
)
0%
D
f(x) increases in the interval
(
2
k
+
1
1
,
2
k
+
2
1
)
0%
Solution:
f
(
x
)
=
cos
(
x
π
)
⇒
f
′
(
x
)
=
−
sin
(
x
π
)
(
x
2
−
π
)
=
x
2
π
sin
x
π
For increasing function,
f
′
(
x
)
>
0
⇒
sin
(
x
π
)
>
0
⇒
2
kπ
<
x
π
<
(
2
k
+
1
)
π
⇒
2
k
1
>
x
>
2
k
+
1
1
For decreasing function,
f
′
(
x
)
<
0
⇒
sin
(
x
π
)
<
0
⇒
x
π
∈
[(
2
k
+
1
)
π
,
(
2
k
+
2
)
π
]
⇒
x
∈
(
2
k
+
2
1
,
2
k
+
1
1
)