Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x) = \cos \left( \frac{\pi}{x} \right) , x \neq 0 $ then assuming $k$ as an integer,

WBJEEWBJEE 2018

Solution:

$f(x)=\cos \left(\frac{\pi}{x}\right)$
$\Rightarrow f'(x)=-\sin \left(\frac{\pi}{x}\right)\left(\frac{-\pi}{x^{2}}\right)=\frac{\pi}{x^{2}} \sin \frac{\pi}{x}$
For increasing function, $f'(x) > 0$
$\Rightarrow \sin \left(\frac{\pi}{x}\right) > 0 $
$\Rightarrow 2 k \pi < \frac{\pi}{x} < (2 k+1) \pi$
$\Rightarrow \frac{1}{2 k} > x > \frac{1}{2 k+1}$
For decreasing function, $f'(x) < 0$
$\Rightarrow \sin \left(\frac{\pi}{x}\right) < 0$
$\Rightarrow \frac{\pi}{x} \in[(2 k+1) \pi,(2 k+2) \pi] $
$\Rightarrow x \in\left(\frac{1}{2 k+2}, \frac{1}{2 k+1}\right)$