Q.
Let f(x) be a linear function such that f(0)=−5 and f(f(0))=−15. The number of values of m for which the solutions of the inequality f(x)f(m−x)≥0 form an interval of length 2 , is.
Let f(x)=ax+b f(0)=−5⇒b=−5 f(f(0))=−15⇒a=2 ∴f(x)=2x−5
Now f(x)⋅f(m−x)≥0 ∴(x−25)(x−(m−25))⩽0
Case I 25>m−25, here length of interval =25−m+25=2⇒m=3
Case II 25<m−25, here length of interval =m−25−25=2 ⇒m=7 ∴ two values of m